¿Cuál es el numero real, tal que su inverso mas el cuadrado de su inverso es igual a 6?
(1/x) + (1/x)² = 6 → let: y = 1/x
y + y² = 6
y² + y + (1/4) = 6 + (1/4)
[y + (1/2)]² = 25/4
y + (1/2) = ± 5/2
y = - (1/2) ± (5/2)
y = (- 1 ± 5)/2
y = (- 1 - 5)/2 = - 3 → x = - 1/3
y = (- 1 + 5)/2 = 2 → x = 1/2
→ Solution = { - 1/3 ; 1/2 }
1/x + (1/x)² = 6
1/x + 1/x^2 = 6
( 1X + 1 )/X^2 = 6
1 X + 1 = 6 X^2
6 X^2 - X - 1 = 0
X = ( 1 +- Raiz 1^2 + 4 * 6 * 1 ) / 12
X = ( 1 +- 5 ) / 12
X = ( 1 + 5 ) / 12
X = 6/12
X = 1/2
X´ = ( 1 - 5 ) / 12
X´= - 4/12
X´= - 1/3
.....................................................
1/1/2 + 1/1/4 = 2 + 4
1/x + 1/x² = 6
Multiplico todo por x²:
x + 1 = 6x²
6x² - x - 1 = 0
Las dos respuestas posibles son:
x1 = 1/2
x2 = -1/3
Copyright © 2025 Q2A.MX - All rights reserved.
Answers & Comments
(1/x) + (1/x)² = 6 → let: y = 1/x
y + y² = 6
y² + y + (1/4) = 6 + (1/4)
[y + (1/2)]² = 25/4
y + (1/2) = ± 5/2
y = - (1/2) ± (5/2)
y = (- 1 ± 5)/2
y = (- 1 - 5)/2 = - 3 → x = - 1/3
y = (- 1 + 5)/2 = 2 → x = 1/2
→ Solution = { - 1/3 ; 1/2 }
1/x + (1/x)² = 6
1/x + 1/x^2 = 6
( 1X + 1 )/X^2 = 6
1 X + 1 = 6 X^2
6 X^2 - X - 1 = 0
X = ( 1 +- Raiz 1^2 + 4 * 6 * 1 ) / 12
X = ( 1 +- 5 ) / 12
X = ( 1 + 5 ) / 12
X = 6/12
X = 1/2
X´ = ( 1 - 5 ) / 12
X´= - 4/12
X´= - 1/3
.....................................................
1/1/2 + 1/1/4 = 2 + 4
1/x + (1/x)² = 6
1/x + 1/x² = 6
Multiplico todo por x²:
x + 1 = 6x²
6x² - x - 1 = 0
Las dos respuestas posibles son:
x1 = 1/2
x2 = -1/3